#include #include #include #include #include #include #include #include "config.h" #include "jpeglib.h" extern "C" { #include "cdjpeg.h" } using namespace emscripten; // MozJPEG doesn’t expose a numeric version, so I have to do some fun C macro // hackery to turn it into a string. More details here: // https://gcc.gnu.org/onlinedocs/cpp/Stringizing.html #define xstr(s) str(s) #define str(s) #s struct MozJpegOptions { int quality; bool baseline; bool arithmetic; bool progressive; bool optimize_coding; int smoothing; int color_space; int quant_table; bool trellis_multipass; bool trellis_opt_zero; bool trellis_opt_table; int trellis_loops; bool auto_subsample; int chroma_subsample; bool separate_chroma_quality; int chroma_quality; }; int version() { char buffer[] = xstr(MOZJPEG_VERSION); int version = 0; int last_index = 0; for (int i = 0; i < strlen(buffer); i++) { if (buffer[i] == '.') { buffer[i] = '\0'; version = version << 8 | atoi(&buffer[last_index]); buffer[i] = '.'; last_index = i + 1; } } version = version << 8 | atoi(&buffer[last_index]); return version; } thread_local const val Uint8Array = val::global("Uint8Array"); val encode(std::string image_in, int image_width, int image_height, MozJpegOptions opts) { uint8_t* image_buffer = (uint8_t*)image_in.c_str(); // The code below is basically the `write_JPEG_file` function from // https://github.com/mozilla/mozjpeg/blob/master/example.c // I just write to memory instead of a file. /* Step 1: allocate and initialize JPEG compression object */ /* This struct contains the JPEG compression parameters and pointers to * working space (which is allocated as needed by the JPEG library). * It is possible to have several such structures, representing multiple * compression/decompression processes, in existence at once. We refer * to any one struct (and its associated working data) as a "JPEG object". */ jpeg_compress_struct cinfo; /* This struct represents a JPEG error handler. It is declared separately * because applications often want to supply a specialized error handler * (see the second half of this file for an example). But here we just * take the easy way out and use the standard error handler, which will * print a message on stderr and call exit() if compression fails. * Note that this struct must live as long as the main JPEG parameter * struct, to avoid dangling-pointer problems. */ jpeg_error_mgr jerr; /* We have to set up the error handler first, in case the initialization * step fails. (Unlikely, but it could happen if you are out of memory.) * This routine fills in the contents of struct jerr, and returns jerr's * address which we place into the link field in cinfo. */ cinfo.err = jpeg_std_error(&jerr); /* Now we can initialize the JPEG compression object. */ jpeg_create_compress(&cinfo); /* Step 2: specify data destination (eg, a file) */ /* Note: steps 2 and 3 can be done in either order. */ /* Here we use the library-supplied code to send compressed data to a * stdio stream. You can also write your own code to do something else. * VERY IMPORTANT: use "b" option to fopen() if you are on a machine that * requires it in order to write binary files. */ // if ((outfile = fopen(filename, "wb")) == NULL) { // fprintf(stderr, "can't open %s\n", filename); // exit(1); // } uint8_t* output = nullptr; unsigned long size = 0; jpeg_mem_dest(&cinfo, &output, &size); /* Step 3: set parameters for compression */ /* First we supply a description of the input image. * Four fields of the cinfo struct must be filled in: */ cinfo.image_width = image_width; /* image width and height, in pixels */ cinfo.image_height = image_height; cinfo.input_components = 4; /* # of color components per pixel */ cinfo.in_color_space = JCS_EXT_RGBA; /* colorspace of input image */ /* Now use the library's routine to set default compression parameters. * (You must set at least cinfo.in_color_space before calling this, * since the defaults depend on the source color space.) */ jpeg_set_defaults(&cinfo); jpeg_set_colorspace(&cinfo, (J_COLOR_SPACE)opts.color_space); if (opts.quant_table != -1) { jpeg_c_set_int_param(&cinfo, JINT_BASE_QUANT_TBL_IDX, opts.quant_table); } cinfo.optimize_coding = opts.optimize_coding; if (opts.arithmetic) { cinfo.arith_code = TRUE; cinfo.optimize_coding = FALSE; } cinfo.smoothing_factor = opts.smoothing; jpeg_c_set_bool_param(&cinfo, JBOOLEAN_USE_SCANS_IN_TRELLIS, opts.trellis_multipass); jpeg_c_set_bool_param(&cinfo, JBOOLEAN_TRELLIS_EOB_OPT, opts.trellis_opt_zero); jpeg_c_set_bool_param(&cinfo, JBOOLEAN_TRELLIS_Q_OPT, opts.trellis_opt_table); jpeg_c_set_int_param(&cinfo, JINT_TRELLIS_NUM_LOOPS, opts.trellis_loops); jpeg_c_set_int_param(&cinfo, JINT_DC_SCAN_OPT_MODE, 0); // A little hacky to build a string for this, but it means we can use // set_quality_ratings which does some useful heuristic stuff. std::string quality_str = std::to_string(opts.quality); if (opts.separate_chroma_quality && opts.color_space == JCS_YCbCr) { quality_str += "," + std::to_string(opts.chroma_quality); } char const* pqual = quality_str.c_str(); set_quality_ratings(&cinfo, (char*)pqual, opts.baseline); if (!opts.auto_subsample && opts.color_space == JCS_YCbCr) { cinfo.comp_info[0].h_samp_factor = opts.chroma_subsample; cinfo.comp_info[0].v_samp_factor = opts.chroma_subsample; if (opts.chroma_subsample > 2) { // Otherwise encoding fails. jpeg_c_set_int_param(&cinfo, JINT_DC_SCAN_OPT_MODE, 1); } } if (!opts.baseline && opts.progressive) { jpeg_simple_progression(&cinfo); } else { cinfo.num_scans = 0; cinfo.scan_info = NULL; } /* Step 4: Start compressor */ /* TRUE ensures that we will write a complete interchange-JPEG file. * Pass TRUE unless you are very sure of what you're doing. */ jpeg_start_compress(&cinfo, TRUE); /* Step 5: while (scan lines remain to be written) */ /* jpeg_write_scanlines(...); */ /* Here we use the library's state variable cinfo.next_scanline as the * loop counter, so that we don't have to keep track ourselves. * To keep things simple, we pass one scanline per call; you can pass * more if you wish, though. */ int row_stride = image_width * 4; /* JSAMPLEs per row in image_buffer */ while (cinfo.next_scanline < cinfo.image_height) { /* jpeg_write_scanlines expects an array of pointers to scanlines. * Here the array is only one element long, but you could pass * more than one scanline at a time if that's more convenient. */ JSAMPROW row_pointer = &image_buffer[cinfo.next_scanline * row_stride]; /* pointer to JSAMPLE row[s] */ (void)jpeg_write_scanlines(&cinfo, &row_pointer, 1); } /* Step 6: Finish compression */ jpeg_finish_compress(&cinfo); /* Step 7: release JPEG compression object */ auto js_result = Uint8Array.new_(typed_memory_view(size, output)); /* This is an important step since it will release a good deal of memory. */ jpeg_destroy_compress(&cinfo); free(output); /* And we're done! */ return js_result; } EMSCRIPTEN_BINDINGS(my_module) { value_object("MozJpegOptions") .field("quality", &MozJpegOptions::quality) .field("baseline", &MozJpegOptions::baseline) .field("arithmetic", &MozJpegOptions::arithmetic) .field("progressive", &MozJpegOptions::progressive) .field("optimize_coding", &MozJpegOptions::optimize_coding) .field("smoothing", &MozJpegOptions::smoothing) .field("color_space", &MozJpegOptions::color_space) .field("quant_table", &MozJpegOptions::quant_table) .field("trellis_multipass", &MozJpegOptions::trellis_multipass) .field("trellis_opt_zero", &MozJpegOptions::trellis_opt_zero) .field("trellis_opt_table", &MozJpegOptions::trellis_opt_table) .field("trellis_loops", &MozJpegOptions::trellis_loops) .field("chroma_subsample", &MozJpegOptions::chroma_subsample) .field("auto_subsample", &MozJpegOptions::auto_subsample) .field("separate_chroma_quality", &MozJpegOptions::separate_chroma_quality) .field("chroma_quality", &MozJpegOptions::chroma_quality); function("version", &version); function("encode", &encode); }