
It's not possible to share them across threads, so in case we decide to use multithreading in the future, it's best to mark them as thread_local right away, even if it's a no-op right now.
217 lines
8.6 KiB
C++
217 lines
8.6 KiB
C++
#include <emscripten/bind.h>
|
|
#include <emscripten/val.h>
|
|
#include <inttypes.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "libimagequant.h"
|
|
|
|
using namespace emscripten;
|
|
|
|
int version() {
|
|
return (((LIQ_VERSION / 10000) % 100) << 16) | (((LIQ_VERSION / 100) % 100) << 8) |
|
|
(((LIQ_VERSION / 1) % 100) << 0);
|
|
}
|
|
|
|
thread_local const val Uint8ClampedArray = val::global("Uint8ClampedArray");
|
|
|
|
#define liq_ptr(T) std::unique_ptr<T, std::integral_constant<decltype(&T##_destroy), T##_destroy>>
|
|
|
|
using liq_attr_ptr = liq_ptr(liq_attr);
|
|
using liq_image_ptr = liq_ptr(liq_image);
|
|
using liq_result_ptr = liq_ptr(liq_result);
|
|
|
|
liq_result_ptr liq_image_quantize(liq_image* image, liq_attr* attr) {
|
|
liq_result* res = nullptr;
|
|
liq_image_quantize(image, attr, &res);
|
|
return liq_result_ptr(res);
|
|
}
|
|
|
|
val quantize(std::string rawimage,
|
|
int image_width,
|
|
int image_height,
|
|
int num_colors,
|
|
float dithering) {
|
|
auto image_buffer = (const liq_color*)rawimage.c_str();
|
|
int size = image_width * image_height;
|
|
liq_attr_ptr attr(liq_attr_create());
|
|
liq_image_ptr image(
|
|
liq_image_create_rgba(attr.get(), image_buffer, image_width, image_height, 0));
|
|
liq_set_max_colors(attr.get(), num_colors);
|
|
auto res = liq_image_quantize(image.get(), attr.get());
|
|
liq_set_dithering_level(res.get(), dithering);
|
|
std::vector<uint8_t> image8bit(size);
|
|
std::vector<liq_color> result(size);
|
|
liq_write_remapped_image(res.get(), image.get(), image8bit.data(), image8bit.size());
|
|
auto pal = liq_get_palette(res.get());
|
|
// Turn palletted image back into an RGBA image
|
|
for (int i = 0; i < size; i++) {
|
|
result[i] = pal->entries[image8bit[i]];
|
|
}
|
|
return Uint8ClampedArray.new_(
|
|
typed_memory_view(result.size() * sizeof(liq_color), (const uint8_t*)result.data()));
|
|
}
|
|
|
|
const liq_color zx_colors[] = {
|
|
{.r = 0, .g = 0, .b = 0, .a = 255}, // regular black
|
|
{.r = 0, .g = 0, .b = 215, .a = 255}, // regular blue
|
|
{.r = 215, .g = 0, .b = 0, .a = 255}, // regular red
|
|
{.r = 215, .g = 0, .b = 215, .a = 255}, // regular magenta
|
|
{.r = 0, .g = 215, .b = 0, .a = 255}, // regular green
|
|
{.r = 0, .g = 215, .b = 215, .a = 255}, // regular cyan
|
|
{.r = 215, .g = 215, .b = 0, .a = 255}, // regular yellow
|
|
{.r = 215, .g = 215, .b = 215, .a = 255}, // regular white
|
|
{.r = 0, .g = 0, .b = 255, .a = 255}, // bright blue
|
|
{.r = 255, .g = 0, .b = 0, .a = 255}, // bright red
|
|
{.r = 255, .g = 0, .b = 255, .a = 255}, // bright magenta
|
|
{.r = 0, .g = 255, .b = 0, .a = 255}, // bright green
|
|
{.r = 0, .g = 255, .b = 255, .a = 255}, // bright cyan
|
|
{.r = 255, .g = 255, .b = 0, .a = 255}, // bright yellow
|
|
{.r = 255, .g = 255, .b = 255, .a = 255} // bright white
|
|
};
|
|
|
|
/**
|
|
* The ZX has one bit per pixel, but can assign two colours to an 8x8 block. The
|
|
* two colours must both be 'regular' or 'bright'. Black exists as both regular
|
|
* and bright.
|
|
*/
|
|
val zx_quantize(std::string rawimage, int image_width, int image_height, float dithering) {
|
|
auto image_buffer = (const liq_color*)rawimage.c_str();
|
|
int size = image_width * image_height;
|
|
liq_color block[8 * 8];
|
|
uint8_t image8bit[8 * 8];
|
|
std::vector<liq_color> result(size);
|
|
|
|
// For each 8x8 grid
|
|
for (int block_start_y = 0; block_start_y < image_height; block_start_y += 8) {
|
|
for (int block_start_x = 0; block_start_x < image_width; block_start_x += 8) {
|
|
int color_popularity[15] = {0};
|
|
int block_index = 0;
|
|
int block_width = 8;
|
|
int block_height = 8;
|
|
|
|
// If the block hangs off the right/bottom of the image dimensions, make
|
|
// it smaller to fit.
|
|
if (block_start_y + block_height > image_height) {
|
|
block_height = image_height - block_start_y;
|
|
}
|
|
|
|
if (block_start_x + block_width > image_width) {
|
|
block_width = image_width - block_start_x;
|
|
}
|
|
|
|
// For each pixel in that block:
|
|
for (int y = block_start_y; y < block_start_y + block_height; y++) {
|
|
for (int x = block_start_x; x < block_start_x + block_width; x++) {
|
|
int pixel_start = (y * image_width) + x;
|
|
int smallest_distance = INT_MAX;
|
|
int winning_index = -1;
|
|
|
|
// Copy pixel data for quantizing later
|
|
block[block_index++] = image_buffer[pixel_start];
|
|
|
|
// Which zx color is this pixel closest to?
|
|
for (int color_index = 0; color_index < 15; color_index++) {
|
|
liq_color color = zx_colors[color_index];
|
|
liq_color pixel = image_buffer[pixel_start];
|
|
|
|
// Using Euclidean distance. LibQuant has better methods, but it
|
|
// requires conversion to LAB, so I don't think it's worth it.
|
|
int distance =
|
|
pow(color.r - pixel.r, 2) + pow(color.g - pixel.g, 2) + pow(color.b - pixel.b, 2);
|
|
|
|
if (distance < smallest_distance) {
|
|
winning_index = color_index;
|
|
smallest_distance = distance;
|
|
}
|
|
}
|
|
color_popularity[winning_index]++;
|
|
}
|
|
}
|
|
|
|
// Get the three most popular colours for the block.
|
|
int first_color_index = 0;
|
|
int second_color_index = 0;
|
|
int third_color_index = 0;
|
|
int highest_popularity = -1;
|
|
int second_highest_popularity = -1;
|
|
int third_highest_popularity = -1;
|
|
|
|
for (int color_index = 0; color_index < 15; color_index++) {
|
|
if (color_popularity[color_index] > highest_popularity) {
|
|
// Store this as the most popular pixel, and demote the current
|
|
// values:
|
|
third_color_index = second_color_index;
|
|
third_highest_popularity = second_highest_popularity;
|
|
second_color_index = first_color_index;
|
|
second_highest_popularity = highest_popularity;
|
|
first_color_index = color_index;
|
|
highest_popularity = color_popularity[color_index];
|
|
} else if (color_popularity[color_index] > second_highest_popularity) {
|
|
third_color_index = second_color_index;
|
|
third_highest_popularity = second_highest_popularity;
|
|
second_color_index = color_index;
|
|
second_highest_popularity = color_popularity[color_index];
|
|
} else if (color_popularity[color_index] > third_highest_popularity) {
|
|
third_color_index = color_index;
|
|
third_highest_popularity = color_popularity[color_index];
|
|
}
|
|
}
|
|
|
|
// ZX images can't mix bright and regular colours, except black which
|
|
// appears in both. Resolve any conflict:
|
|
while (1) {
|
|
// If either colour is black, there's no conflict to resolve.
|
|
if (first_color_index != 0 && second_color_index != 0) {
|
|
if (first_color_index >= 8 && second_color_index < 8) {
|
|
// Make the second color bright
|
|
second_color_index = second_color_index + 7;
|
|
} else if (first_color_index < 8 && second_color_index >= 8) {
|
|
// Make the second color regular
|
|
second_color_index = second_color_index - 7;
|
|
}
|
|
}
|
|
|
|
// If, during conflict resolving, we now have two of the same colour
|
|
// (because we initially selected the bright & regular version of the
|
|
// same colour), retry again with the third most popular colour.
|
|
if (first_color_index == second_color_index) {
|
|
second_color_index = third_color_index;
|
|
} else
|
|
break;
|
|
}
|
|
|
|
// Quantize
|
|
liq_attr_ptr attr(liq_attr_create());
|
|
liq_image_ptr image(liq_image_create_rgba(attr.get(), block, block_width, block_height, 0));
|
|
liq_set_max_colors(attr.get(), 2);
|
|
liq_image_add_fixed_color(image.get(), zx_colors[first_color_index]);
|
|
liq_image_add_fixed_color(image.get(), zx_colors[second_color_index]);
|
|
auto res = liq_image_quantize(image.get(), attr.get());
|
|
liq_set_dithering_level(res.get(), dithering);
|
|
liq_write_remapped_image(res.get(), image.get(), image8bit, size);
|
|
auto pal = liq_get_palette(res.get());
|
|
|
|
// Turn palletted image back into an RGBA image, and write it into the
|
|
// full size result image.
|
|
for (int y = 0; y < block_height; y++) {
|
|
for (int x = 0; x < block_width; x++) {
|
|
int image8BitPos = y * block_width + x;
|
|
int resultStartPos = ((block_start_y + y) * image_width) + (block_start_x + x);
|
|
result[resultStartPos] = pal->entries[image8bit[image8BitPos]];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return Uint8ClampedArray.new_(
|
|
typed_memory_view(result.size() * sizeof(liq_color), (const uint8_t*)result.data()));
|
|
}
|
|
|
|
EMSCRIPTEN_BINDINGS(my_module) {
|
|
function("quantize", &quantize);
|
|
function("zx_quantize", &zx_quantize);
|
|
function("version", &version);
|
|
}
|