Files
squoosh/codecs/imagequant/imagequant.cpp
Ingvar Stepanyan 7da3f07333 Switch to Emscripten upstream
Looks like we've been stuck on Emscripten fastcomp backend, misssing out on all new optimisations between LLVM 6 and LLVM 11 and going via slow asm.js pipeline when building.

This changes Docker images for Emscripten projects to point to emscripten-upstream instead and commits the updated artifacts.
2020-05-01 15:00:10 +01:00

246 lines
9.3 KiB
C++

#include "emscripten/bind.h"
#include "emscripten/val.h"
#include <stdlib.h>
#include <inttypes.h>
#include <limits.h>
#include <math.h>
#include "libimagequant.h"
using namespace emscripten;
int version() {
return (((LIQ_VERSION/10000) % 100) << 16) |
(((LIQ_VERSION/100 ) % 100) << 8) |
(((LIQ_VERSION/1 ) % 100) << 0);
}
class RawImage {
public:
val buffer;
int width;
int height;
RawImage(val b, int w, int h)
: buffer(b), width(w), height(h) {}
};
liq_attr *attr;
liq_image *image;
liq_result *res;
uint8_t* result;
RawImage quantize(std::string rawimage, int image_width, int image_height, int num_colors, float dithering) {
const uint8_t* image_buffer = (uint8_t*)rawimage.c_str();
int size = image_width * image_height;
attr = liq_attr_create();
image = liq_image_create_rgba(attr, image_buffer, image_width, image_height, 0);
liq_set_max_colors(attr, num_colors);
liq_image_quantize(image, attr, &res);
liq_set_dithering_level(res, dithering);
uint8_t* image8bit = (uint8_t*) malloc(size);
result = (uint8_t*) malloc(size * 4);
liq_write_remapped_image(res, image, image8bit, size);
const liq_palette *pal = liq_get_palette(res);
// Turn palletted image back into an RGBA image
for(int i = 0; i < size; i++) {
result[i * 4 + 0] = pal->entries[image8bit[i]].r;
result[i * 4 + 1] = pal->entries[image8bit[i]].g;
result[i * 4 + 2] = pal->entries[image8bit[i]].b;
result[i * 4 + 3] = pal->entries[image8bit[i]].a;
}
free(image8bit);
liq_result_destroy(res);
liq_image_destroy(image);
liq_attr_destroy(attr);
return {
val(typed_memory_view(image_width*image_height*4, result)),
image_width,
image_height
};
}
const liq_color zx_colors[] = {
{.r = 0, .g = 0, .b = 0, .a = 255}, // regular black
{.r = 0, .g = 0, .b = 215, .a = 255}, // regular blue
{.r = 215, .g = 0, .b = 0, .a = 255}, // regular red
{.r = 215, .g = 0, .b = 215, .a = 255}, // regular magenta
{.r = 0, .g = 215, .b = 0, .a = 255}, // regular green
{.r = 0, .g = 215, .b = 215, .a = 255}, // regular cyan
{.r = 215, .g = 215, .b = 0, .a = 255}, // regular yellow
{.r = 215, .g = 215, .b = 215, .a = 255}, // regular white
{.r = 0, .g = 0, .b = 255, .a = 255}, // bright blue
{.r = 255, .g = 0, .b = 0, .a = 255}, // bright red
{.r = 255, .g = 0, .b = 255, .a = 255}, // bright magenta
{.r = 0, .g = 255, .b = 0, .a = 255}, // bright green
{.r = 0, .g = 255, .b = 255, .a = 255}, // bright cyan
{.r = 255, .g = 255, .b = 0, .a = 255}, // bright yellow
{.r = 255, .g = 255, .b = 255, .a = 255} // bright white
};
uint8_t block[8 * 8 * 4];
/**
* The ZX has one bit per pixel, but can assign two colours to an 8x8 block. The two colours must
* both be 'regular' or 'bright'. Black exists as both regular and bright.
*/
RawImage zx_quantize(std::string rawimage, int image_width, int image_height, float dithering) {
const uint8_t* image_buffer = (uint8_t*) rawimage.c_str();
int size = image_width * image_height;
int bytes_per_pixel = 4;
result = (uint8_t*) malloc(size * bytes_per_pixel);
uint8_t* image8bit = (uint8_t*) malloc(8 * 8);
// For each 8x8 grid
for (int block_start_y = 0; block_start_y < image_height; block_start_y += 8) {
for (int block_start_x = 0; block_start_x < image_width; block_start_x += 8) {
int color_popularity[15] = {0};
int block_index = 0;
int block_width = 8;
int block_height = 8;
// If the block hangs off the right/bottom of the image dimensions, make it smaller to fit.
if (block_start_y + block_height > image_height) {
block_height = image_height - block_start_y;
}
if (block_start_x + block_width > image_width) {
block_width = image_width - block_start_x;
}
// For each pixel in that block:
for (int y = block_start_y; y < block_start_y + block_height; y++) {
for (int x = block_start_x; x < block_start_x + block_width; x++) {
int pixel_start = (y * image_width * bytes_per_pixel) + (x * bytes_per_pixel);
int smallest_distance = INT_MAX;
int winning_index = -1;
// Copy pixel data for quantizing later
block[block_index++] = image_buffer[pixel_start];
block[block_index++] = image_buffer[pixel_start + 1];
block[block_index++] = image_buffer[pixel_start + 2];
block[block_index++] = image_buffer[pixel_start + 3];
// Which zx color is this pixel closest to?
for (int color_index = 0; color_index < 15; color_index++) {
liq_color color = zx_colors[color_index];
// Using Euclidean distance. LibQuant has better methods, but it requires conversion to
// LAB, so I don't think it's worth it.
int distance =
pow(color.r - image_buffer[pixel_start + 0], 2) +
pow(color.g - image_buffer[pixel_start + 1], 2) +
pow(color.b - image_buffer[pixel_start + 2], 2);
if (distance < smallest_distance) {
winning_index = color_index;
smallest_distance = distance;
}
}
color_popularity[winning_index]++;
}
}
// Get the three most popular colours for the block.
int first_color_index = 0;
int second_color_index = 0;
int third_color_index = 0;
int highest_popularity = -1;
int second_highest_popularity = -1;
int third_highest_popularity = -1;
for (int color_index = 0; color_index < 15; color_index++) {
if (color_popularity[color_index] > highest_popularity) {
// Store this as the most popular pixel, and demote the current values:
third_color_index = second_color_index;
third_highest_popularity = second_highest_popularity;
second_color_index = first_color_index;
second_highest_popularity = highest_popularity;
first_color_index = color_index;
highest_popularity = color_popularity[color_index];
} else if (color_popularity[color_index] > second_highest_popularity) {
third_color_index = second_color_index;
third_highest_popularity = second_highest_popularity;
second_color_index = color_index;
second_highest_popularity = color_popularity[color_index];
} else if (color_popularity[color_index] > third_highest_popularity) {
third_color_index = color_index;
third_highest_popularity = color_popularity[color_index];
}
}
// ZX images can't mix bright and regular colours, except black which appears in both.
// Resolve any conflict:
while (1) {
// If either colour is black, there's no conflict to resolve.
if (first_color_index != 0 && second_color_index != 0) {
if (first_color_index >= 8 && second_color_index < 8) {
// Make the second color bright
second_color_index = second_color_index + 7;
} else if (first_color_index < 8 && second_color_index >= 8) {
// Make the second color regular
second_color_index = second_color_index - 7;
}
}
// If, during conflict resolving, we now have two of the same colour (because we initially
// selected the bright & regular version of the same colour), retry again with the third
// most popular colour.
if (first_color_index == second_color_index) {
second_color_index = third_color_index;
} else break;
}
// Quantize
attr = liq_attr_create();
image = liq_image_create_rgba(attr, block, block_width, block_height, 0);
liq_set_max_colors(attr, 2);
liq_image_add_fixed_color(image, zx_colors[first_color_index]);
liq_image_add_fixed_color(image, zx_colors[second_color_index]);
liq_image_quantize(image, attr, &res);
liq_set_dithering_level(res, dithering);
liq_write_remapped_image(res, image, image8bit, size);
const liq_palette *pal = liq_get_palette(res);
// Turn palletted image back into an RGBA image, and write it into the full size result image.
for(int y = 0; y < block_height; y++) {
for(int x = 0; x < block_width; x++) {
int image8BitPos = y * block_width + x;
int resultStartPos = ((block_start_y + y) * bytes_per_pixel * image_width) + ((block_start_x + x) * bytes_per_pixel);
result[resultStartPos + 0] = pal->entries[image8bit[image8BitPos]].r;
result[resultStartPos + 1] = pal->entries[image8bit[image8BitPos]].g;
result[resultStartPos + 2] = pal->entries[image8bit[image8BitPos]].b;
result[resultStartPos + 3] = pal->entries[image8bit[image8BitPos]].a;
}
}
liq_result_destroy(res);
liq_image_destroy(image);
liq_attr_destroy(attr);
}
}
free(image8bit);
return {
val(typed_memory_view(image_width*image_height*4, result)),
image_width,
image_height
};
}
void free_result() {
free(result);
}
EMSCRIPTEN_BINDINGS(my_module) {
class_<RawImage>("RawImage")
.property("buffer", &RawImage::buffer)
.property("width", &RawImage::width)
.property("height", &RawImage::height);
function("quantize", &quantize);
function("zx_quantize", &zx_quantize);
function("version", &version);
function("free_result", &free_result);
}