Format C / C++ with Chromium style

This commit is contained in:
Ingvar Stepanyan
2020-05-12 18:36:38 +01:00
committed by Ingvar Stepanyan
parent de543b3206
commit a95cb740bf
5 changed files with 149 additions and 156 deletions

2
.clang-format Normal file
View File

@ -0,0 +1,2 @@
BasedOnStyle: Chromium
ColumnLimit: 120

View File

@ -1,36 +1,37 @@
#include "emscripten/bind.h"
#include "emscripten/val.h"
#include <stdlib.h>
#include <emscripten/bind.h>
#include <emscripten/val.h>
#include <inttypes.h>
#include <limits.h>
#include <math.h>
#include <stdlib.h>
#include "libimagequant.h"
using namespace emscripten;
int version() {
return (((LIQ_VERSION/10000) % 100) << 16) |
(((LIQ_VERSION/100 ) % 100) << 8) |
(((LIQ_VERSION/1 ) % 100) << 0);
return (((LIQ_VERSION / 10000) % 100) << 16) | (((LIQ_VERSION / 100) % 100) << 8) |
(((LIQ_VERSION / 1) % 100) << 0);
}
class RawImage {
public:
public:
val buffer;
int width;
int height;
RawImage(val b, int w, int h)
: buffer(b), width(w), height(h) {}
RawImage(val b, int w, int h) : buffer(b), width(w), height(h) {}
};
liq_attr *attr;
liq_image *image;
liq_result *res;
liq_attr* attr;
liq_image* image;
liq_result* res;
uint8_t* result;
RawImage quantize(std::string rawimage, int image_width, int image_height, int num_colors, float dithering) {
RawImage quantize(std::string rawimage,
int image_width,
int image_height,
int num_colors,
float dithering) {
const uint8_t* image_buffer = (uint8_t*)rawimage.c_str();
int size = image_width * image_height;
attr = liq_attr_create();
@ -38,12 +39,12 @@ RawImage quantize(std::string rawimage, int image_width, int image_height, int n
liq_set_max_colors(attr, num_colors);
liq_image_quantize(image, attr, &res);
liq_set_dithering_level(res, dithering);
uint8_t* image8bit = (uint8_t*) malloc(size);
result = (uint8_t*) malloc(size * 4);
uint8_t* image8bit = (uint8_t*)malloc(size);
result = (uint8_t*)malloc(size * 4);
liq_write_remapped_image(res, image, image8bit, size);
const liq_palette *pal = liq_get_palette(res);
const liq_palette* pal = liq_get_palette(res);
// Turn palletted image back into an RGBA image
for(int i = 0; i < size; i++) {
for (int i = 0; i < size; i++) {
result[i * 4 + 0] = pal->entries[image8bit[i]].r;
result[i * 4 + 1] = pal->entries[image8bit[i]].g;
result[i * 4 + 2] = pal->entries[image8bit[i]].b;
@ -53,43 +54,41 @@ RawImage quantize(std::string rawimage, int image_width, int image_height, int n
liq_result_destroy(res);
liq_image_destroy(image);
liq_attr_destroy(attr);
return {
val(typed_memory_view(image_width*image_height*4, result)),
image_width,
image_height
};
return {val(typed_memory_view(image_width * image_height * 4, result)), image_width,
image_height};
}
const liq_color zx_colors[] = {
{.r = 0, .g = 0, .b = 0, .a = 255}, // regular black
{.r = 0, .g = 0, .b = 215, .a = 255}, // regular blue
{.r = 215, .g = 0, .b = 0, .a = 255}, // regular red
{.r = 215, .g = 0, .b = 215, .a = 255}, // regular magenta
{.r = 0, .g = 215, .b = 0, .a = 255}, // regular green
{.r = 0, .g = 215, .b = 215, .a = 255}, // regular cyan
{.r = 215, .g = 215, .b = 0, .a = 255}, // regular yellow
{.r = 215, .g = 215, .b = 215, .a = 255}, // regular white
{.r = 0, .g = 0, .b = 255, .a = 255}, // bright blue
{.r = 255, .g = 0, .b = 0, .a = 255}, // bright red
{.r = 255, .g = 0, .b = 255, .a = 255}, // bright magenta
{.r = 0, .g = 255, .b = 0, .a = 255}, // bright green
{.r = 0, .g = 255, .b = 255, .a = 255}, // bright cyan
{.r = 255, .g = 255, .b = 0, .a = 255}, // bright yellow
{.r = 255, .g = 255, .b = 255, .a = 255} // bright white
{.r = 0, .g = 0, .b = 0, .a = 255}, // regular black
{.r = 0, .g = 0, .b = 215, .a = 255}, // regular blue
{.r = 215, .g = 0, .b = 0, .a = 255}, // regular red
{.r = 215, .g = 0, .b = 215, .a = 255}, // regular magenta
{.r = 0, .g = 215, .b = 0, .a = 255}, // regular green
{.r = 0, .g = 215, .b = 215, .a = 255}, // regular cyan
{.r = 215, .g = 215, .b = 0, .a = 255}, // regular yellow
{.r = 215, .g = 215, .b = 215, .a = 255}, // regular white
{.r = 0, .g = 0, .b = 255, .a = 255}, // bright blue
{.r = 255, .g = 0, .b = 0, .a = 255}, // bright red
{.r = 255, .g = 0, .b = 255, .a = 255}, // bright magenta
{.r = 0, .g = 255, .b = 0, .a = 255}, // bright green
{.r = 0, .g = 255, .b = 255, .a = 255}, // bright cyan
{.r = 255, .g = 255, .b = 0, .a = 255}, // bright yellow
{.r = 255, .g = 255, .b = 255, .a = 255} // bright white
};
uint8_t block[8 * 8 * 4];
/**
* The ZX has one bit per pixel, but can assign two colours to an 8x8 block. The two colours must
* both be 'regular' or 'bright'. Black exists as both regular and bright.
* The ZX has one bit per pixel, but can assign two colours to an 8x8 block. The
* two colours must both be 'regular' or 'bright'. Black exists as both regular
* and bright.
*/
RawImage zx_quantize(std::string rawimage, int image_width, int image_height, float dithering) {
const uint8_t* image_buffer = (uint8_t*) rawimage.c_str();
const uint8_t* image_buffer = (uint8_t*)rawimage.c_str();
int size = image_width * image_height;
int bytes_per_pixel = 4;
result = (uint8_t*) malloc(size * bytes_per_pixel);
uint8_t* image8bit = (uint8_t*) malloc(8 * 8);
result = (uint8_t*)malloc(size * bytes_per_pixel);
uint8_t* image8bit = (uint8_t*)malloc(8 * 8);
// For each 8x8 grid
for (int block_start_y = 0; block_start_y < image_height; block_start_y += 8) {
@ -99,7 +98,8 @@ RawImage zx_quantize(std::string rawimage, int image_width, int image_height, fl
int block_width = 8;
int block_height = 8;
// If the block hangs off the right/bottom of the image dimensions, make it smaller to fit.
// If the block hangs off the right/bottom of the image dimensions, make
// it smaller to fit.
if (block_start_y + block_height > image_height) {
block_height = image_height - block_start_y;
}
@ -125,12 +125,11 @@ RawImage zx_quantize(std::string rawimage, int image_width, int image_height, fl
for (int color_index = 0; color_index < 15; color_index++) {
liq_color color = zx_colors[color_index];
// Using Euclidean distance. LibQuant has better methods, but it requires conversion to
// LAB, so I don't think it's worth it.
int distance =
pow(color.r - image_buffer[pixel_start + 0], 2) +
pow(color.g - image_buffer[pixel_start + 1], 2) +
pow(color.b - image_buffer[pixel_start + 2], 2);
// Using Euclidean distance. LibQuant has better methods, but it
// requires conversion to LAB, so I don't think it's worth it.
int distance = pow(color.r - image_buffer[pixel_start + 0], 2) +
pow(color.g - image_buffer[pixel_start + 1], 2) +
pow(color.b - image_buffer[pixel_start + 2], 2);
if (distance < smallest_distance) {
winning_index = color_index;
@ -151,7 +150,8 @@ RawImage zx_quantize(std::string rawimage, int image_width, int image_height, fl
for (int color_index = 0; color_index < 15; color_index++) {
if (color_popularity[color_index] > highest_popularity) {
// Store this as the most popular pixel, and demote the current values:
// Store this as the most popular pixel, and demote the current
// values:
third_color_index = second_color_index;
third_highest_popularity = second_highest_popularity;
second_color_index = first_color_index;
@ -169,8 +169,8 @@ RawImage zx_quantize(std::string rawimage, int image_width, int image_height, fl
}
}
// ZX images can't mix bright and regular colours, except black which appears in both.
// Resolve any conflict:
// ZX images can't mix bright and regular colours, except black which
// appears in both. Resolve any conflict:
while (1) {
// If either colour is black, there's no conflict to resolve.
if (first_color_index != 0 && second_color_index != 0) {
@ -183,12 +183,13 @@ RawImage zx_quantize(std::string rawimage, int image_width, int image_height, fl
}
}
// If, during conflict resolving, we now have two of the same colour (because we initially
// selected the bright & regular version of the same colour), retry again with the third
// most popular colour.
// If, during conflict resolving, we now have two of the same colour
// (because we initially selected the bright & regular version of the
// same colour), retry again with the third most popular colour.
if (first_color_index == second_color_index) {
second_color_index = third_color_index;
} else break;
} else
break;
}
// Quantize
@ -200,13 +201,15 @@ RawImage zx_quantize(std::string rawimage, int image_width, int image_height, fl
liq_image_quantize(image, attr, &res);
liq_set_dithering_level(res, dithering);
liq_write_remapped_image(res, image, image8bit, size);
const liq_palette *pal = liq_get_palette(res);
const liq_palette* pal = liq_get_palette(res);
// Turn palletted image back into an RGBA image, and write it into the full size result image.
for(int y = 0; y < block_height; y++) {
for(int x = 0; x < block_width; x++) {
// Turn palletted image back into an RGBA image, and write it into the
// full size result image.
for (int y = 0; y < block_height; y++) {
for (int x = 0; x < block_width; x++) {
int image8BitPos = y * block_width + x;
int resultStartPos = ((block_start_y + y) * bytes_per_pixel * image_width) + ((block_start_x + x) * bytes_per_pixel);
int resultStartPos = ((block_start_y + y) * bytes_per_pixel * image_width) +
((block_start_x + x) * bytes_per_pixel);
result[resultStartPos + 0] = pal->entries[image8bit[image8BitPos]].r;
result[resultStartPos + 1] = pal->entries[image8bit[image8BitPos]].g;
result[resultStartPos + 2] = pal->entries[image8bit[image8BitPos]].b;
@ -221,11 +224,8 @@ RawImage zx_quantize(std::string rawimage, int image_width, int image_height, fl
}
free(image8bit);
return {
val(typed_memory_view(image_width*image_height*4, result)),
image_width,
image_height
};
return {val(typed_memory_view(image_width * image_height * 4, result)), image_width,
image_height};
}
void free_result() {
@ -234,9 +234,9 @@ void free_result() {
EMSCRIPTEN_BINDINGS(my_module) {
class_<RawImage>("RawImage")
.property("buffer", &RawImage::buffer)
.property("width", &RawImage::width)
.property("height", &RawImage::height);
.property("buffer", &RawImage::buffer)
.property("width", &RawImage::width)
.property("height", &RawImage::height);
function("quantize", &quantize);
function("zx_quantize", &zx_quantize);

View File

@ -1,9 +1,9 @@
#include <emscripten/bind.h>
#include <emscripten/val.h>
#include <stdlib.h>
#include <inttypes.h>
#include <stdio.h>
#include <setjmp.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "config.h"
#include "jpeglib.h"
@ -14,8 +14,9 @@ extern "C" {
using namespace emscripten;
// MozJPEG doesnt expose a numeric version, so I have to do some fun C macro hackery to turn it
// into a string. More details here: https://gcc.gnu.org/onlinedocs/cpp/Stringizing.html
// MozJPEG doesnt expose a numeric version, so I have to do some fun C macro
// hackery to turn it into a string. More details here:
// https://gcc.gnu.org/onlinedocs/cpp/Stringizing.html
#define xstr(s) str(s)
#define str(s) #s
@ -42,8 +43,8 @@ int version() {
char buffer[] = xstr(MOZJPEG_VERSION);
int version = 0;
int last_index = 0;
for(int i = 0; i < strlen(buffer); i++) {
if(buffer[i] == '.') {
for (int i = 0; i < strlen(buffer); i++) {
if (buffer[i] == '.') {
buffer[i] = '\0';
version = version << 8 | atoi(&buffer[last_index]);
buffer[i] = '.';
@ -58,13 +59,12 @@ uint8_t* last_result;
struct jpeg_compress_struct cinfo;
val encode(std::string image_in, int image_width, int image_height, MozJpegOptions opts) {
uint8_t* image_buffer = (uint8_t*) image_in.c_str();
uint8_t* image_buffer = (uint8_t*)image_in.c_str();
// The code below is basically the `write_JPEG_file` function from
// https://github.com/mozilla/mozjpeg/blob/master/example.c
// I just write to memory instead of a file.
/* This struct contains the JPEG compression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
* It is possible to have several such structures, representing multiple
@ -81,8 +81,8 @@ val encode(std::string image_in, int image_width, int image_height, MozJpegOptio
*/
struct jpeg_error_mgr jerr;
/* More stuff */
JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */
int row_stride; /* physical row width in image buffer */
JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */
int row_stride; /* physical row width in image buffer */
uint8_t* output;
unsigned long size;
@ -116,17 +116,17 @@ val encode(std::string image_in, int image_width, int image_height, MozJpegOptio
/* First we supply a description of the input image.
* Four fields of the cinfo struct must be filled in:
*/
cinfo.image_width = image_width; /* image width and height, in pixels */
cinfo.image_width = image_width; /* image width and height, in pixels */
cinfo.image_height = image_height;
cinfo.input_components = 4; /* # of color components per pixel */
cinfo.in_color_space = JCS_EXT_RGBA; /* colorspace of input image */
cinfo.input_components = 4; /* # of color components per pixel */
cinfo.in_color_space = JCS_EXT_RGBA; /* colorspace of input image */
/* Now use the library's routine to set default compression parameters.
* (You must set at least cinfo.in_color_space before calling this,
* since the defaults depend on the source color space.)
*/
jpeg_set_defaults(&cinfo);
jpeg_set_colorspace(&cinfo, (J_COLOR_SPACE) opts.color_space);
jpeg_set_colorspace(&cinfo, (J_COLOR_SPACE)opts.color_space);
if (opts.quant_table != -1) {
jpeg_c_set_int_param(&cinfo, JINT_BASE_QUANT_TBL_IDX, opts.quant_table);
@ -146,17 +146,17 @@ val encode(std::string image_in, int image_width, int image_height, MozJpegOptio
jpeg_c_set_bool_param(&cinfo, JBOOLEAN_TRELLIS_Q_OPT, opts.trellis_opt_table);
jpeg_c_set_int_param(&cinfo, JINT_TRELLIS_NUM_LOOPS, opts.trellis_loops);
// A little hacky to build a string for this, but it means we can use set_quality_ratings which
// does some useful heuristic stuff.
// A little hacky to build a string for this, but it means we can use
// set_quality_ratings which does some useful heuristic stuff.
std::string quality_str = std::to_string(opts.quality);
if (opts.separate_chroma_quality && opts.color_space == JCS_YCbCr) {
quality_str += "," + std::to_string(opts.chroma_quality);
}
char const *pqual = quality_str.c_str();
char const* pqual = quality_str.c_str();
set_quality_ratings(&cinfo, (char*) pqual, opts.baseline);
set_quality_ratings(&cinfo, (char*)pqual, opts.baseline);
if (!opts.auto_subsample && opts.color_space == JCS_YCbCr) {
cinfo.comp_info[0].h_samp_factor = opts.chroma_subsample;
@ -191,8 +191,8 @@ val encode(std::string image_in, int image_width, int image_height, MozJpegOptio
* Here the array is only one element long, but you could pass
* more than one scanline at a time if that's more convenient.
*/
row_pointer[0] = & image_buffer[cinfo.next_scanline * row_stride];
(void) jpeg_write_scanlines(&cinfo, row_pointer, 1);
row_pointer[0] = &image_buffer[cinfo.next_scanline * row_stride];
(void)jpeg_write_scanlines(&cinfo, row_pointer, 1);
}
/* Step 6: Finish compression */
@ -213,23 +213,22 @@ void free_result() {
EMSCRIPTEN_BINDINGS(my_module) {
value_object<MozJpegOptions>("MozJpegOptions")
.field("quality", &MozJpegOptions::quality)
.field("baseline", &MozJpegOptions::baseline)
.field("arithmetic", &MozJpegOptions::arithmetic)
.field("progressive", &MozJpegOptions::progressive)
.field("optimize_coding", &MozJpegOptions::optimize_coding)
.field("smoothing", &MozJpegOptions::smoothing)
.field("color_space", &MozJpegOptions::color_space)
.field("quant_table", &MozJpegOptions::quant_table)
.field("trellis_multipass", &MozJpegOptions::trellis_multipass)
.field("trellis_opt_zero", &MozJpegOptions::trellis_opt_zero)
.field("trellis_opt_table", &MozJpegOptions::trellis_opt_table)
.field("trellis_loops", &MozJpegOptions::trellis_loops)
.field("chroma_subsample", &MozJpegOptions::chroma_subsample)
.field("auto_subsample", &MozJpegOptions::auto_subsample)
.field("separate_chroma_quality", &MozJpegOptions::separate_chroma_quality)
.field("chroma_quality", &MozJpegOptions::chroma_quality)
;
.field("quality", &MozJpegOptions::quality)
.field("baseline", &MozJpegOptions::baseline)
.field("arithmetic", &MozJpegOptions::arithmetic)
.field("progressive", &MozJpegOptions::progressive)
.field("optimize_coding", &MozJpegOptions::optimize_coding)
.field("smoothing", &MozJpegOptions::smoothing)
.field("color_space", &MozJpegOptions::color_space)
.field("quant_table", &MozJpegOptions::quant_table)
.field("trellis_multipass", &MozJpegOptions::trellis_multipass)
.field("trellis_opt_zero", &MozJpegOptions::trellis_opt_zero)
.field("trellis_opt_table", &MozJpegOptions::trellis_opt_table)
.field("trellis_loops", &MozJpegOptions::trellis_loops)
.field("chroma_subsample", &MozJpegOptions::chroma_subsample)
.field("auto_subsample", &MozJpegOptions::auto_subsample)
.field("separate_chroma_quality", &MozJpegOptions::separate_chroma_quality)
.field("chroma_quality", &MozJpegOptions::chroma_quality);
function("version", &version);
function("encode", &encode);

View File

@ -1,8 +1,8 @@
#include <string>
#include "emscripten/bind.h"
#include "emscripten/val.h"
#include "src/webp/decode.h"
#include "src/webp/demux.h"
#include <string>
using namespace emscripten;
@ -11,24 +11,19 @@ int version() {
}
class RawImage {
public:
public:
val buffer;
int width;
int height;
RawImage(val b, int w, int h)
: buffer(b), width(w), height(h) {}
RawImage(val b, int w, int h) : buffer(b), width(w), height(h) {}
};
uint8_t* last_result;
RawImage decode(std::string buffer) {
int width, height;
last_result = WebPDecodeRGBA((const uint8_t*)buffer.c_str(), buffer.size(), &width, &height);
return RawImage(
val(typed_memory_view(width*height*4, last_result)),
width,
height
);
return RawImage(val(typed_memory_view(width * height * 4, last_result)), width, height);
}
void free_result() {
@ -37,9 +32,9 @@ void free_result() {
EMSCRIPTEN_BINDINGS(my_module) {
class_<RawImage>("RawImage")
.property("buffer", &RawImage::buffer)
.property("width", &RawImage::width)
.property("height", &RawImage::height);
.property("buffer", &RawImage::buffer)
.property("width", &RawImage::width)
.property("height", &RawImage::height);
function("decode", &decode);
function("version", &version);

View File

@ -1,9 +1,9 @@
#include <emscripten/bind.h>
#include <emscripten/val.h>
#include "src/webp/encode.h"
#include <stdlib.h>
#include <string.h>
#include <stdexcept>
#include "src/webp/encode.h"
using namespace emscripten;
@ -14,7 +14,7 @@ int version() {
uint8_t* last_result;
val encode(std::string img, int width, int height, WebPConfig config) {
uint8_t* img_in = (uint8_t*) img.c_str();
uint8_t* img_in = (uint8_t*)img.c_str();
// A lot of this is duplicated from Encode in picture_enc.c
WebPPicture pic;
@ -35,7 +35,7 @@ val encode(std::string img, int width, int height, WebPConfig config) {
WebPMemoryWriterInit(&wrt);
ok = WebPPictureImportRGBA(&pic, (uint8_t*) img_in, width * 4) && WebPEncode(&config, &pic);
ok = WebPPictureImportRGBA(&pic, (uint8_t*)img_in, width * 4) && WebPEncode(&config, &pic);
WebPPictureFree(&pic);
if (!ok) {
WebPMemoryWriterClear(&wrt);
@ -51,44 +51,41 @@ void free_result() {
WebPFree(last_result);
}
EMSCRIPTEN_BINDINGS(my_module) {
enum_<WebPImageHint>("WebPImageHint")
.value("WEBP_HINT_DEFAULT", WebPImageHint::WEBP_HINT_DEFAULT)
.value("WEBP_HINT_PICTURE", WebPImageHint::WEBP_HINT_PICTURE)
.value("WEBP_HINT_PHOTO", WebPImageHint::WEBP_HINT_PHOTO)
.value("WEBP_HINT_GRAPH", WebPImageHint::WEBP_HINT_GRAPH)
;
.value("WEBP_HINT_DEFAULT", WebPImageHint::WEBP_HINT_DEFAULT)
.value("WEBP_HINT_PICTURE", WebPImageHint::WEBP_HINT_PICTURE)
.value("WEBP_HINT_PHOTO", WebPImageHint::WEBP_HINT_PHOTO)
.value("WEBP_HINT_GRAPH", WebPImageHint::WEBP_HINT_GRAPH);
value_object<WebPConfig>("WebPConfig")
.field("lossless", &WebPConfig::lossless)
.field("quality", &WebPConfig::quality)
.field("method", &WebPConfig::method)
.field("image_hint", &WebPConfig::image_hint)
.field("target_size", &WebPConfig::target_size)
.field("target_PSNR", &WebPConfig::target_PSNR)
.field("segments", &WebPConfig::segments)
.field("sns_strength", &WebPConfig::sns_strength)
.field("filter_strength", &WebPConfig::filter_strength)
.field("filter_sharpness", &WebPConfig::filter_sharpness)
.field("filter_type", &WebPConfig::filter_type)
.field("autofilter", &WebPConfig::autofilter)
.field("alpha_compression", &WebPConfig::alpha_compression)
.field("alpha_filtering", &WebPConfig::alpha_filtering)
.field("alpha_quality", &WebPConfig::alpha_quality)
.field("pass", &WebPConfig::pass)
.field("show_compressed", &WebPConfig::show_compressed)
.field("preprocessing", &WebPConfig::preprocessing)
.field("partitions", &WebPConfig::partitions)
.field("partition_limit", &WebPConfig::partition_limit)
.field("emulate_jpeg_size", &WebPConfig::emulate_jpeg_size)
.field("thread_level", &WebPConfig::thread_level)
.field("low_memory", &WebPConfig::low_memory)
.field("near_lossless", &WebPConfig::near_lossless)
.field("exact", &WebPConfig::exact)
.field("use_delta_palette", &WebPConfig::use_delta_palette)
.field("use_sharp_yuv", &WebPConfig::use_sharp_yuv)
;
.field("lossless", &WebPConfig::lossless)
.field("quality", &WebPConfig::quality)
.field("method", &WebPConfig::method)
.field("image_hint", &WebPConfig::image_hint)
.field("target_size", &WebPConfig::target_size)
.field("target_PSNR", &WebPConfig::target_PSNR)
.field("segments", &WebPConfig::segments)
.field("sns_strength", &WebPConfig::sns_strength)
.field("filter_strength", &WebPConfig::filter_strength)
.field("filter_sharpness", &WebPConfig::filter_sharpness)
.field("filter_type", &WebPConfig::filter_type)
.field("autofilter", &WebPConfig::autofilter)
.field("alpha_compression", &WebPConfig::alpha_compression)
.field("alpha_filtering", &WebPConfig::alpha_filtering)
.field("alpha_quality", &WebPConfig::alpha_quality)
.field("pass", &WebPConfig::pass)
.field("show_compressed", &WebPConfig::show_compressed)
.field("preprocessing", &WebPConfig::preprocessing)
.field("partitions", &WebPConfig::partitions)
.field("partition_limit", &WebPConfig::partition_limit)
.field("emulate_jpeg_size", &WebPConfig::emulate_jpeg_size)
.field("thread_level", &WebPConfig::thread_level)
.field("low_memory", &WebPConfig::low_memory)
.field("near_lossless", &WebPConfig::near_lossless)
.field("exact", &WebPConfig::exact)
.field("use_delta_palette", &WebPConfig::use_delta_palette)
.field("use_sharp_yuv", &WebPConfig::use_sharp_yuv);
function("version", &version);
function("encode", &encode);